Bounds for the solutions of second-order linear difference equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Bounds for Asymptotic Solutions of Second-Order Linear Difference Equations II: The First Case

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We discuss in detail the error bounds for asymptotic solutions of second-order linear difference equation yn 2 n p anyn 1 n q bnyn 0, where p and q are integers, an and bn have asymp...

متن کامل

Bounded Solutions to Nonhomogeneous Linear Second-Order Difference Equations

By using some solvability methods and the contraction mapping principle are investigated bounded, as well as periodic solutions to some classes of nonhomogeneous linear second-order difference equations on domains N0, Z \N2 and Z. The case when the coefficients of the equation are constant and the zeros of the characteristic polynomial associated to the corresponding homogeneous equation do not...

متن کامل

NON-STANDARD FINITE DIFFERENCE METHOD FOR NUMERICAL SOLUTION OF SECOND ORDER LINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

In this article we have considered a non-standard finite difference method for the solution of second order  Fredholm integro differential equation type initial value problems. The non-standard finite difference method and the composite trapezoidal quadrature method is used to transform the Fredholm integro-differential equation into a system of equations. We have also developed a numerical met...

متن کامل

On the stability of linear differential equations of second order

The aim of this paper is to investigate the Hyers-Ulam stability of the  linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$  $fin C[a,b]$ and $-infty

متن کامل

Periodic solutions for nonlinear second-order difference equations

We establish conditions for the existence of periodic solutions of nonlinear, second-order difference equations of the form y(t + 2) + by(t + 1) + cy(t) = f (y(t)), where c = 0 and f :R→ R is continuous. In our main result we assume that f exhibits sublinear growth and that there is a constant β > 0 such that u f (u) > 0 whenever |u| ≥ β. For such an equation we prove that ifN is an odd integer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics

سال: 1967

ISSN: 0022-4340

DOI: 10.6028/jres.071b.021